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A hybrid magnetohydrodynamic-gyro-kinetic model is developed for the stability
analysis of global Alféh waves in the presence of energetic ions. The ideal MHD
model is extended to take into account the perturbed parallel electric field and the
finite Larmor radius which are relevant for high temperature plasmas. The gyrokinetic
formulation fully includes the tokamak geometry and the effects of non-standard
orbits of energetic ions, which experience large excursions away from the magnetic
flux surfaces. The algorithms implemented in the CASTOR-K code are presented
together with tests of the numerical accuracy. The orbit integration algorithms are
optimized. An efficient algorithm is developed for evaluation of the wave-particle
energy exchange expressed by the quadratic MR © 1999 EURATOM
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I. INTRODUCTION

The excitation of kinetic Alfgn waves by resonant interaction with energetic ions c
cause loss of confinement of the fast ions in tokamaks with intense auxiliary heating
a tokamak fusion reactor [44].

The tokamak geometry yields coupling between different poloidal harmonics of
Alfv'en wave, which breaks up the shear Alfivtontinuous spectrum and, furthermore
creates discrete global toroidicity-induced shear éffeigenmodes (TAE) with frequencie:
inside the continuum gaps [7]. In a thermo-nuclear reactor the interaction of alpha par
with the TAEs can lead to instabilities [17]. Unstable TAEs during neutral beam inject
were first observed in thEF TR tokamak [50].

Detailed quantitative predictions are required for the accurate analysis of JET D-T
charges and for the design of ITER or other reactor relevant devices. This is beyon
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102 BORBA AND KERNER

capability of analytical treatment as done by Keretal. [30] and Fu and Van Dam [18]. The
assessment of the stability of TAEs and kinetic toroidicity-induced eigenmodes (KTAE
in a fusion reactor needs to be based on realistic plasma equilibria, realistic TAE w.
fields, and realistic distribution functions of the energetic ions including finite orbit width
These requirements prompt the development of a general model which includes all tf
effects in a self-consistent manner. The influence of the plasma geometry on the TAE
KTAE eigenfunctions is important in analyzing low toroidal mode numbers, where tt
wavelength is comparable with the plasma dimensions. In particular, toroidal equilib
with non-circular plasma shapes must be considered. In addition, a toroidal model wt
includes bulk ion finite Larmor radius corrections is required in order to compute the KT/
spectrum. As pointed out by Mett and Mahajan [35], the KTAES become important in stu
ing the high temperature plasmas characteristic of the present large fusion experiments
normal-mode MHD code CASTOR [31] has been extended for this purpose. The interac
between the TAE and KTAE wave fields with the energetic particle population has to te
into account the finite orbit widths of the high energy ions. The large excursions away fr
the magnetic flux surfaces experienced by the high energy ions are significant comp:
with the widths of the relevant TAE and KTAESs. The interaction between theeAlivaves
propagating along the field lines and the energetic ions is significantly reduced due to fi
particle orbit effects. In our model, the contribution of large orbits, such as non-stand
particle orbits, is included in the stability analysis of both the TAE and KTAE modes usi
the formalism developed in [42]. Thus, the radial extent of the eigenmode and the ra
excursions away from the flux surfaces are computed consistently in toroidal plasmas.
is crucial for the accurate calculation of the energy exchange between the particles an
high-n KTAEs and core localized TAEs. The expressions required for the analysis of J
D-T plasmas and for ITER predictions are derived self-consistently and the corresponc
algorithms are developed and programed. Expressions for the particle orbits and orbit to
ogy in straight field line coordinates are obtained. The numerical evaluation of the ort
requires adedicated algorithmin order to resolve accurately the magnetic axis and the bo
aries between different orbit topological regions (e.g., like the trapping-passing bounda
The procedure developed conserves the motion invariants, namely, energy, toroidal car
cal momentum, and magnetic momentum, independently of the accuracy of the equilibr
representation. The numerical evaluation of the quadratic §kép; leads to a six dimen-
sional phase-space integration. The six dimensional phase-space is described usin
following variables: energy, magnetic momentum, poloidal angle, and cyclotronic pha
together with the toroidal canonical momentum and toroidal angle. Both numerical &
analytical methods are employed in each step of the integration. The final integration :
with respect to magnetic momentum and toroidal canonical momentum is performed
merically using a two dimensional adaptive scheme. The procedure works in two pha
At first, a rectangular mesh is constructed evaluating the function to be integrated at €
point. Thus, a first estimate of the integral is obtained. Second, a refinement criterion
lects the area where accumulation points are required for improvement in the accurac
the integration. This procedure is repeated until a predefined accuracy of the integratic
achieved. This numerical procedure is implemented in the new code CASTOR-K.

The paper is organized as follows: In Section I, a general formulation for the study of t
excitation of Alfvén eigenmodes by energetic ions in tokamaks is derived. A quadratic fo
8Whet is constructed which measures the effect of the energetic particles on the stabilit
global Alfvén modes. The emphasis is placed on the importance of the finite excursion
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the energetic particles away from the flux surfaces leading to a detailed description o
particle orbits. Therefore, the equations of motion are formulated in a specific flux coordi
system, leading to a complete characterization of the orbit topology of high energy i
In Section 111, a group of numerical codes is presented. The introduction of a general
form for the plasma resistivity in the linear resistive MHD code CASTOR is described. 1
numerical evaluation of the quadratic foidi,o, which represents the energy exchang
between the Alfeh eigenmodes and the energetic particles, is performed by the CASTO!
code. The different steps of the integration procedure are presented in detail. Approg
numerical algorithms for the large scale numerical evaluation are developed and te
Conclusions are contained in Section IV. Details of the particle motion in straight field |
coordinates are given in Appendixes 1 and 2. Appendix 3 is devoted to the accuracy o
field line representation.

Il. THE MODEL

The stability analysis of a plasma configuration is performed by means of an hyl
model. The fluid part of the model solves the linearized resitive MHD equations,

wdp = —V - (pgdv) (1.1)
wpodT = —V - (poST + 8pTo) + (V x Bo) x (V x 8A) — By x (Vx V x §A)  (I1.2)
wpodP = —podt - Vpo — (yp — 1) PoV - 83 + 2n(y — 1)(V x Bo) - (V x V x 8A) (I1.3)

wSA=—Bg x 81 —nV x V x 8A, (11.4)

wheredp represents the plasma density perturbatianthe perturbed fluid velocityj P
the perturbed pressur&A the perturbed vector potentiajl,the plasma resistivityy, the
adiabatic plasma compressibility constgmtthe equilibrium plasma pressui#,; the equi-
librium magnetic field, and the eigenvalue.

The gyro-kinetic part includes the interaction of the energetic ions with the MHD we
using a perturbative approach. The evolution of the particle distribution funé¢giamthe
presence of electromagnetic fields is described by the collisionless Vlasov equation. L
the position of the guiding centé, the parallel velocity, the perpendicular velocity, and
the gyro-anglex as variables the Vlasov equation has the form

aaftp+R v f +v”gf| +UL%+ %]; 0. (11.5)

In the usual gyro-kinetic approximation, where the cyclotronic motion of the particle arot
the magnetic field line is averaged in time, the dimensions of the system are reduced
six to five. This allows the study of time scales which are large compared to the cyclotr
motion, thus the fast varying tera(df,/d«) is eliminated in the Vlasov equation by
the averaging procedure. The solution of the time dependent Vlasov equation is obte
perturbatively. The zeroth order solution, the time independent solution, is obtained f
distribution of particles in a time independent electromagnetic {igld By) in the form of

the single particle constants of motion. A steady-state distribution of particles in a toroid
symmetric magnetic field is given by a function of eneEgycanonical toroidal momentum
Py, and the magnetic momentum The dependence an= € {—1, 1} is due to the fact

that for a given(E, P,, u) there can exist zero, one, or two orbits. In the case where t
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orbits exist, the sign af will distinguish these two orbits. In the case of large non-standar
orbits,o can be chosen as the time derivative of the toroidal amgtesign(¢). For orbits
with a very small excursion from the poloidal flux surfaces;an also be identified with
the sign ofv; or 4. In the presence of a perturbed time dependent electromagnetic fie
(E(), B(t)) = (Eoq, Bp) + (E1(t), B1(t)), the corresponding linear perturbed distribution
function f; (i.e., f, = Fo + f1) is obtained from the linearized perturbed Vlasov equatior

dfl .(1)3F0 .(1)3F0
Therefore, the total perturbed distribution function is
dF dF BY 5F
f, = q)(l)a_EO + p¢(1)a_PZ - “?a—uo + hy, (1.7)
@ @
dhy _ 9FodL™ R aL™ (11.8)

dt ~ 9E ot P, 3¢

where the linearized perturbed Lagrangia® of the unperturbed particle motion up to
first order inO(é) is given by

> 1 - S
LD — Ze(Aa) + §vb(l)> R— WD — ;,BD, (1.9)

Ris the particle positiony is the particle velocity parallel to the magnetic fieRd? is the
perturbed vector potentiab™® is the perturbed electrostatic potential, ant the particle
magnetic moment.

Expressions (11.7)—(11.8) indicate that the total perturbed distribution function can |
expressed in terms of the sum of the non-adiabatichpagind the adiabatic contribution.
The fact that the orbit motion is periodic is used in the integration of Eq. (l1.8).

Inthis analysis the plasmais described by two classes of particles. The low energy parti
which contain most of the plasma pressure are described as a conducting magnetized
i.e., by the MHD model, while the energetic particles have to be treated by a gyro-kine
approach. The plasma dispersion relation in the ideal MHD framework can be written
the self-adjoint quadratic form

Cz)zEk = SWMHD, (”10)

whereEy is the kinetic energy of the perturbation ailp is the potential energy. With

the inclusion of the fast particles the system is no longer self-adjoint. But in the case wh
the contribution of the hot particles is smaiyot << s Wwnp, the problem can be treated per-
turbatively. In zeroth order, the normal mode problem is solved in the ideal MHD framewc
as a generalized eigenvalue problem. The first order correction to the eigenvalue, due t
presence of the additional supra-thermal particle population, is computed using the ei
vectors obtained for each MHD eigenvalue. This first order approximation neglects the
particle contribution to the eigenfunction but gives the leading order estimate of the gro\
rate of the MHD wavey; . Therefore, the growth rate of a marginally stable wave is given b

(@r +i@i)?Ex = 8Wyrp + 8Who, (.11)
vy _ o IM[§Whof

L= = — . .12
w  wr 2a)r2Ek ( )
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It is required to compute i\, for a given fast particle distributiofrg. §W: can be
obtained from the perturbed distributidi.

Since only the non-adiabatic partfifcan give an imaginary contribution to the dispersio
function a quadratic form including a supra-thermal particle distribution is obtained [4-

SW, Z dR,dEdu 3 N tb(a) nw,) 2 Yo"
o= " Ze m2 ¢ 55 * 8Ew-|—nwD-|-(nq+ Py

(I1.13)

The perturbed Lagrangian is bounce averaged over the particle orbits and expand
Fourier harmonics of the periodic particle motion

LY = [Weine® (11.14)
with n the toroidal wave number. The Fourier coefficients are defined as

d
Y5 = f T; [ g Ponr (11.15)

The denominator in th&W,q; expression vanishes if
I'(E) =  + Nwp + (Nq+ P)ap = 0; (I1.16)

this implies that the particle is in resonance with the wave. Taking into account the sir
larities of the integrand, the integral has to be performed over the phase space. The
proportional tow represents the free energy due to the gradients in velocity space, cau
the Landau damping, while the term proportionaiég represents the free energy available
due to the spatial gradients in the distribution function

IF /3P,
IFJOE "

Wy =

(11.17)

In the evaluation of the growth rate it is necessary to compute the imaginary pa,qf
Since only the poles in the particle wave response can give an imaginary contributic
SWhat, the three, dimensional integral is reduced to two dimensions by integrating al
the resonant conditiofi(E) = 0. In the evaluation of the growth rate tBé,; quadratic
form is reduced to

. oF 2n||Yp|
5whot_——/dp¢duz Z (0~ Nw,) 5= AT/0E]" (1.18)

o Pp=—oc0

II.1. Particle Orbits and Orbit Topology

The gyro-averaged guiding centre equations of motion are obtained from a variati
principle where the Lagrangian is

- 1 - 5 1 .
L=Zel A+ —yB) - R+ —uB® —H, 11.1.1
< tgu > + ok ( )
and

1
H =§mvf+m3+2e<1>. (1.1.2)
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Ris the particle positiony; is the particle velocity parallel to the magnetic fielljs the
vector potentialg is the electrostatic potential,is the particle magnetic momem,is the
gyro-angle, and2 the gyro-frequency. From the Euler—-Lagrange equations the followir
guiding center equations of motion are obtained [33],

UG v B viB nB
(B+QB(be)) v”B—}—Qbe—i— B 5« VB, (1.1.3)

””“ (Vxb)-VB.  (I.1.4)

VI g P ) . M5
B+ —-B-(Vxb =—-—B-VB-
( B (VxD)u =
These equations describe the guiding centre particle motion up to first order in the Lari
radius but the energlg and canonical angular momentu?p are exactly conserved in time
independent and toroidally symmetric magnetic fields

1

E= Emvﬁ+,u3+2e<1>, (1.1.5)
ZeR

P¢ = Zew + Q L B¢, (”16)

whereB, denotes the toroidal magnetic field ayids the poloidal magnetic flux.

General toroidal configurations are analyzed using specific toroidal magnetic flux
ordinates (called CASTOR coordinates). The CASTOR flux coordinates are defined
the radial coordinate = /¥ /v, the poloidal anglé, and the toroidal angle. v is the
poloidal magnetic flux at a given flux surface afaidthe total poloidal flux¢ is the usual
toroidal angle bu is chosen such that the magnetic field lines are straight iréthe)
plane,g‘g = q(s). Itis possible to construct a non-orthogonal coordinate system using t
fact that

B= V¢ x V¢ + FVo, (I1.1.7)

with contra-variant components

F
B = =2 (1.1.8)
f
2 _—
B*= 7, (1.1.9)
BB
== q(s). (1.1.10)

J is the Jacobian of the coordinate systesyd, ¢) and f (s)Vs = Vy (see Appendix 1).
Thus, the particle guiding center equations of motion take the form (see Appendix 2)

1 v?
(1 — Qu”®7)s = 0] + 5“(@; +0107) + %@é, (1.1.12)
1 5 2 Voo 2 K2
1- 507 )0 =v07+ 5(@)2 + 07607) + 595 (1.1.12)

1 . Uﬁ "
(1— §u®7>¢ =103 + 5(@3 +030;) + ﬁ@3, (1.1.13)
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1 . I Ky
1-— —y©® = ——04+ — (O — O407), 11.11.14
( oYl 7)1)“ o 4+mQ( 6 407) ( )
where the particle constants of motion are
1 F(s)

E=_-m’+pu—=, 11.1.15
2™ M hy(s B (1115

f(s)2  Bubs(s, 6)
P, = . 11.1.16
"= 2y, R ( )

The equations which determine the orbits in axis-symmetric time independent magt
field are integrable and can be obtained from these invariants of m@ioR;, 1, o). The
trajectories can be determined analytically along the entire orbit, but the time depend
can only be computed numerically. Eliminatingfrom the previous expressions, the orbi
can be expressed in terms of the implicit relation

1 Q2

s - P _ 2\2 _ _
szeB,,(s,e)z(P"’ ¥1s°)" + uB(s,6) —E=0. (1.1.17)

The solution of this equation defines a set of orbits for gEeNP,, ). When this equation
has two different solutions, itis necessary to introdueesign(¢) to distinguish them. Each
orbit crosses the horizontal mid-plane, defined as thefirel; 6 =7) — (s=1; 0 =0),
twice. In order to study the topology of each orbit, the following definitions are introduc
allowing for negatives values

B(s) = B(s,0) fors>0; B(s)=B(s,7) fors<O0, (11.1.18)
By(S) = By(s,0) fors>0; By(s)=By(s,m) fors<0, (1.1.19)

leading to

. 1 Q?
CD(Ss Ev P¢’ I‘L) =

Tt _ ac2)? 5o FE —
ZmZeI§¢(s)2(P¢ ¥15°)" 4+ uB(s) — E=0. (11.1.20)

It is assumed that the toroidal field is monotonically decreasing with the major rac
and thatB(s, 6) has only one maximum 6 for a given value o8. This allows the analysis
of most plasma shapes including elliptic plasmas with high triangularity, but elimina
“bean-shaped” plasmas or strong elliptic plasmas with d-trapped particles [51].

Equation (1.1.7) wherese [0, 1] and 6 € [0, 2], 6 being a periodic coordinate, de-
scribes the projection of the orbit in thig 6) plane; while Eq. (11.1.20) wherge [—1, 1]
describes only the crossings of the orbit through the mid-plane of the torus. This eque
can have zero to four solutions corresponding to zero to two orbits. The solution of the e
tion d(s=+1, E, Ps, 1) = 0 corresponds to orbits of marginally confined particles whic
cross the plasma boundary, whereas the solufiGe=0, E, Ps, 1) =0 yields the orbits
of particles crossing the magnetic axis. The loci of these orbit&irP,, 1) coordinates
are given by the solution of the two equations

®=0
9

?

. (I1.1.21)

(o5
2
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TABLE 11.1
Topology Regions of the Particle Orbits

Region Orbits Orbit types
| Two Co-passing, encircling the axis
Counter-passing, encircling the axis
1] Two Co-passing, encircling the axis
Counter-passing, high field side
1] Two Mirror-trapped, encircling the axis
Counter-passing, encircling the axis
\% Two Mirror-trapped, encircling the axis
Counter-passing, high field side
Y One Mirror-trapped, encircling the axis
VI One Co-passing, encircling the axis
Wi One Mirror-trapped, not encircling the axis
VI One Co-passing, low field side
IX No orbits —

For a given particle energy the different classes of orbits can be traced iR;the)éplane.
The previous system of equations separatesfhey)-plane into three regions correspond-
ing to the existence of no orbits, one orbit, or two orbits. The equdtisr= 0, E, Ps, ) =0
separates theR,, n)-plane into two different regions related to the topology of the orbi
around the axis. By crossing this boundary there is a particle that crosses the magnetic
and changes from an orbit encircling the axis to an orbit not encircling the axis or vi
versa. In order to complete the orbit classification the definition of a mirror-trapped parti
is given. The orbit is trapped i changes sign during the orbit; §f > 0, the particle is
co-passing, and ib < 0, the particle is counter-passing. The system of equations

®=0
{45(5) o (1.1.22)

separates theR, u)-plane into two regions corresponding to the existence of trappe
particles. Combining these conditions, nine distinct regions can be considered, as shov
Table II.1. An orbit is considered to encircle the axis if it crosses the mid-plase |8, 1]
and inse[—1, 0]. An orbit is on the high field side if it crosses the mid-plane twice a
se[—1, 0] and on the low field side if it crosses the mid-plane twice af0, 1]. The
topological transition of the orbits into different regions are described in Table 11.2 [43].

The previous analysis considers an unbounded system. However, with the inclusion
plasma boundary the orbits with increasing valueBpoétart leaving the plasma by crossing
the plasma boundary.

The solution of the equatio®(s=—1, E, Py, 1) =0 creates region b in thePf, u)-
plane where an orbit leaves the plasma at the high field of the tokamak. The same hap
for the solutions of the equatich(s= 1, E, P4, 1) = 0; the orbit leaves the plasma at the
low field side of the torus thereby creating region c. In region a all possible orbits are ins
the plasma boundaries and in region d all orbits leave the plasma or are completely out:
Both these boundaries can subdivide regions |-IX into subregions a, b, ¢ by restrict
the number of complete orbits inside the plasma. The exceptions are regions VIl and



STABILITY ANALYSIS OF ALFV EN EIGENMODES 109

TABLE 11.2
Topological Transitions of the Particle Orbits

Transition Regions Orbits

1 1= Co-passing, get mirror-trapped
2 " — v Counter-passing, crosses the axis
3 =1l Counter-passing, crosses the axis
4 V-V Counter-passing, disappears
5 1 —vi Both orbits turn into a mirror-trapped
6 VIl = VIII  Mirror-trapped turn into co-passing
7 VI— VIl Co-passing, crosses the axis
8 VI—V Co-passing, get trapped
9 V- VIl Mirror-trapped, crosses the axis

10 11— VI Counter-passing, disappears

11 VIl — IX Co-passing, disappears

with orbits only on the low field side which cannot leave the plasma through the high fi
side. In other words, regions VIl.c and Vlll.c do not exist according to this classificatit
Figures I1.1-11.2 represent the topology of a particle orbit for a typical JET configurati
In Fig. I.1 a particle with a low energy is considered. For low energy particles the orl
are divided into three groups: co-passing, counter-passing, and trapped orbits. In Fig
each group of particles is represented as a domain in the magnetic moment and tol
momentum space. The magnetic momeis normalized to the magnetic momentum of
low energy particle located at the magnetic axis with the velocity along the magnetic f
equal to zero. The toroidal momentum is normalized to the toroidal momentum of a
energy particle following the flux surface that determines the plasma boundary. In Fig.

1ok no orbits!  Trapped Particles -

no orbitsg|

0.8

T

04k Passing Particles -

02 -1

cob o 1 o oo 0oy by ey w1

FIG. Il.1. The topology of standard orbits for a given particle energy as a function of the magnetic mon
and toroidal canonical momentum.
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FIG. Il.2. The topology of non-standard orbits for a given particle energy as a function of the magne
moment and toroidal canonical momentum.

the topology of the orbits of an alpha particle with 3.5 MeV of energy is represent
for different values of the magnetic moment and the toroidal momentum with the sa
normalization used in Fig. 11.2. The class of orbits corresponding to each subregior
(P, ) space is shown in Table I1.1.

. NUMERICAL PROCEDURE

lll.1. Code Organization

Equilibria are constructed using the code HELENA [26], which solves the Grad—Shafra
equation in the (R,Z)-plane by means of isoparametric bicubic Hermite finite elements. -
linear properties of the toroidal Alri eigenmode spectrum are determined by the norme
mode code CASTOR:0mplexAlfvenspectrum intoroidal geometry) [31]. In addition, the
ideal MHD continuous spectrum in advance at each flux surface is solved independentl
the code CSCAS [40].

The MHD eigenmodes obtained can experience fluid damping due to conversion of
mode energy into strongly damped kinetic Adfv'waves (radiative damping) [35] and
collisional electron damping [44].

The resonant energy exchange between the linear eigenmode and the different
cle species present in the plasma, including bulk ions and energetic particles, can onl
computed by a gyro-kinetic approach. The gyro-kinetic extension of the CASTOR cc
(CASTOR-K code, Diagram lll.1a) evaluates numerically the quadratic 8y, which
represents the contribution of resonant particles to the stability of theAkigenmodes.

It includes the determination of the principal wave damping mechanisms: ion and el
tron Landau damping, radiative damping, and collisional electron damping as well as
evaluation of the instability drive (Diagram 111.1b).
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a Reconstruction of the equilibrium

EFIT

A4

HELENA

linear stability analysis

CSCAS  [---- +» CASTOR CASTOR-K

‘ L2 JG96.268/2c

v

’

non-linear dynamics in the presence of energetic ions

.
-
I’l
s

Non-linear simulations

b
ENERGETIC IONS BULK ION and ELECTRONS
(castor-k) (castor-k)
WAVE
(castor)

b

fluid dissipation ELECTRONS
(castor)

JG96.268/4¢

DIAGRAMIILL1.  (a) The differentlevels of the gyro-kinetic model together with the corresponding numeris
tools. (b) The wave exchanges energy with the different particle species present in the plasma. The mode be
unstable when the energy gained by the wave from the energetic particles exceeds the energy lost to bulk io
electrons.

I11.2. ldeal and Nonideal MHD

The kinetic Alfvén wave spectrum is computed by the nonideal extension ofthe CAST
code. A small change in the induction equation allows the kinetic effects to be mode
with accuracy. Using the fact that CASTOR is a resistive MHD code the kinetic ter
can be simply introduced by generalizing the dissipation into a complex parameter.
modeling the kinetic corrections using a simple complex parameter, a correct rest
obtained inthe gap whekg ~ 1/2q Ry. g is the safety factor anBy is the major radius. This
approximation is sufficient to compute the KTAE spectrum in full toroidal geometry sin
the kinetic corrections are valid in the gap region where they are important. Furthermore
coupling between TAEs and kinetic Aw waves leads to conversion of energy from TAE
into kinetic Alfvén waves inside the gap region. Although the propagation of the kine
Alfv’en wave across the entire plasma cross-section is not accurately described, the €
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FIG. 111.2.1. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repi
sents a mode with radial mode numiges 0.

transferred from the TAE to the KAW is accurate. Since these kinetic waves are stron
damped, the radiative damping can also be described well within this approximation.
First order FLR effects of core ions artf) # 0 give the corrections to the eigenmode
equation in the boundary layer around the TAE resonance region.
The structure of this equation is analogous to the structure of the resistive MHD equati
in the limit of |c?nk? /47 w| < 1 with a general complex parametedéfined by

3 T
n= 47[w,0528(ve) + i47rw(4 + _:),052 (1.1.23)
I

Thus, CASTOR provides the MHD spectrum including the TAE and KTAE field pel
turbations needed in CASTOR-K. Using this approximation the KTAE spectrum in fu
toroidal geometry is computed.

The structure of the KTAE modes, where full toroidal effects are taken into account,
shown in Figs. 111.2.1-111.2.4. The calculations are performed for a JET-shaped equilibrit
with Ry = 3m, the safety factor varying froip 2 1 togedge” 3 and the normalized complex
parameten](uoRova) =107 +107%. va denotes the Alfeh velocity on the magnetic
axis. The inner structure of these modes is similar to the structure of the modes comp
using the simplified analytic models, but the global structure of the full toroidal modes
more complex as can be seen in Figs. 111.2.1-111.2.4.

[11.3. The CASTOR-K Code

The influence of energetic particles on the stability of Alfiwvaves is evaluated. Instabil-
ities exist if the energy transferred from energetic particles into the mode via inverse Lan
damping exceeds the energy dissipated into the bulk ions and electrons. The CASTO
code computes perturbatively the energy exchange between a given MHD eigenfunc
and a distribution of energetic particles (see Diagram II1.3). The energy transferred car
expressed by the inner product between the perturbed Lagrangian and the perturbed ¢
bution function. This implies a six-dimensional integration over the phase-space base
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FIG. l1l.2.2. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction ref
sents a mode with radial mode numiges 1.

the coordinate€, Py, u, 7, «, and¢, which is related to the usual coordinai@s v) by
the Jacobian

1

d3x d®v =
m2Ze

dEdP; dudr da d¢. (1n.3.1)
The phase-space integration is performed using both numerical and analytical procec
The gyro-averaged description of the motion of the guiding center averages the gyro-¢

contribution in the integration

/ L®de = 27 LD, (11.3.2)

KTAE p=2

0.0 0.50 1.0
r

FIG. I1.2.3. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction ref
sents a mode with radial mode numiges 2.
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FIG. l1l.2.4. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repi
sents a mode with radial mode numies 3.

Exploiting the periodicity of the unperturbed orbits in the poloidal coordinate, the perturb
Lagrangian is decomposed in Fourier harmondgsand the poloidal angle integration is
performed using Fourier transforms. Only periodic perturbations in the toroidal directi
are considered, thus the integration over the toroidal angle is performed analytically

/e—in¢L(l)ein¢d¢ — oL@ (11.3.3)

In the analysis of the energy exchange between the particle and the wave only the resc
part of the integral is required. The energy integration is performed analytically over t
pole contributions,

"dE dP, dji ~ 2
Im{/ dEdP:"d“] =/dP¢dﬁ7n~ . (111.3.4)
I'(E) |3F/3E|(r(é):0)

The remaining two integrations oveéP,, 1) are performed numerically using a specific
algorithm developed for this problem. The scheme applied to the phase-space integr:
is summarized in Table 111.3.1.

Orbit Integrals

/\

Resonance Condition Wave-Particle Energy Exchange

\/

Phase Space Integration

DIAGRAM I11.3.  The three main stages of the calculation performed by the CASTOR-K code.
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TABLE 111.3.1
Scheme Applied to the Phase-Space Integration

The gyro-angle
The poloidal angle

Analytical  Average procedure
Numerical  Fourier transform

The toroidal angle Analytical ~ Fourier decomposition
The energy Analytical  Integration over the poles
The magnetic moment I Numerical  Binary search algorithm
The toroidal canonical momentum P,  Numerical  Binary search algorithm

meS © R

The two-dimensional integration must be performed for several valupsofic,

_|12

/dP¢ d/iFo (@ — nw*)ggg;%'a. (111.3.5)
The computation of the integrand involves considerable numerical effor¥ Jéwefficients
require the integration of the resonant unperturbed orbits and the Fourier transforms c
perturbed Lagrangian. The selection of the resonant orbits is computed numerically
a root finding procedure; the contribution from each pole is evaluated numerically in
form of 9T/ E. Since the computational effort of each contribution to the toral 1)
integration is significant, the numerical procedure should make a good selection of
points in which the integrand is evaluated.

IIl.4. Integration of the Particle Orbits

The trajectory of a particle can be expressed analytically as a function of the invarian
motion and of the equilibrium quantities. The time dependence of the particle trajectory r
be integrated numerically. For this purpose an explicit integration procedure is develo
The accuracy of the integration scheme is such that the orbit trajectory is reproduce
to a given tolerance. The procedure automatically adjusts the time step according t
conservation of the invariants, namely the endiggnd the toroidal canonical momentum
Ps. The conservation of the magnetic moment is always guaranteed by the gyro-aver
equations of motion. A fourth-order Runge—Kutta algorithm [1] is suitable for this proble
with agood compromise between accuracy and efficiency. Using this procedure an acct
of eg 210719 can be achieved with less than 100 time steps per orbit for most orbits
order to obtain the orbit trajectory up to machine precisiors 10~1° (double precision),
around 1000 time steps per orbit are required. Unfortunately, this is not true for all ort
The orbits very close to the bifurcation where a trapped orbit becomes a passing orbi
called pinch orbits. These orbits are very difficult to compute numerically. For this cl
of orbits the bounce time diverges and those orbits cannot be computed accurately. .
in most applications the contribution of particles at the trapped-passing boundary is
important, these particles are neglected in the calculations. Another class of particles
can create problems during the integrations are the particles that cross the magnetic
Polar coordinates are very efficient in calculating most of the trajectories, but in the pla
centers = 0 the equation of motion becomes singular, Be— co. The sharp transition
from6 = n to &6 = —x of the polar coordinate when the orbit crosses the axis requi
a very small time step to resolve it. The automatic step adjusting procedure can solv
problem but requires an increasing number of time steps as the particles get close
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closer to the magnetic axis, thereby making this procedure very inefficient. The solut
is to adopt a double coordinate integration procedure using both poloidal and Carte:
coordinates. By solving 6 equations instead of the usual 4,

S = FS(S, 9, U||)

0 = Fy(s,0,v))

¢ = Fy(s,6,v))

. 11.4.1
v = FU(S, 9, U”) ( )
X = $cosf — s6 sind

Y = $sinf + sf cosy

the coordinate system is changed into a Cartesian coordinate system when a particle
close to the magnetic axis. Therefore, without any significant increase in the computatic
overhead the orbits close to the magnetic axis can be computed accurately. The ov
accuracy can be seen in Fig. 11l.4.1 where the error associated with the conservatio
the invariants is displayed as a function of the number of time steps per orbit used in
calculation and for different numbers of orbits computed. The larger the number of ort
is, the larger the associated error becomes. By introducing a fourth-order method the
decreases with the fourth power of the time step. This should be true for half an orbit. If
entire orbit is computed the error scales-as (At)~*33 due to the up—down symmetry of
the orbit as shown in Table I1l.4.1. For a larger number of orbits the error scaling is al
given by Table I11.4.1.
For an asymptotically large number of orbits the error should scadecagAt)~° due

to the periodicity of the orbits. Using up—down symmetric plasmas only half of the orb
need to be computed.

JG96.3401
0.01 .

50
orbits

/

10-4

10-6

10
orbits

10-8

LI s S e LU AL B

8p(p

orbit
10-10

UL WL IREUL

10-12

T

10-14 TR I WHTT RN W SN ¥V N N N S N1 B S M AR N 111 S N A W RN 1T
1 10 102 108 104 105

N (steps / orbit)

FIG. ll.4.1. Error associated with the conservation of the invari&&tsP,) as a function of the number of
time steps per orbit.
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TABLE 111.4.1
Error in the Orbit Integrations

Number orbits Integration error
1 € o (At)=433
10 € x (At)™*77
50 € o (At)™4%4

I11.5. Numerical Integration 08W in the Subspace £

The integration over théP, 1) coordinates is performed using a two-dimensional ada
tive scheme. The procedure works in two phases. At first a rectangular mesh is constr
evaluating the function to be integrated at each point. Thus, a first estimate of the inte
is obtained. In the second step, a refinement criterion selects the area where accumt
points are required for improvement in the accuracy of the integration. This procedul
repeated until a predefined accuracy of the integration is achieved. This method is u
in cases where the integral evaluations are very demanding in terms of computing
and where it pays off to spend some time selecting the points at which the integrand
be evaluated. The mesh accumulation is concentrated in areas where the function i
well behaved and, hence, the contribution to the overall integration is more important.
method is a two-dimensional equivalent of the Simpson rule [1], where the evaluated pt
are fitted using cubic polynomials. The deviation from the bicubic interpolating functi
is a measure of the error associated with the integration of that particular sub-elen
This deviation function is used to decide which divisions require further subdivisions
achieve a given accuracy in the integration. Each division requires nine evaluations o
integrand and each subdivision requires an additional five evaluations of the integrand
number of subdivisions required depends on the behavior of the integrand and the su
of the method depends on the choice of the initial rectangular mesh. This method ha
advantage of giving the result after each subdivision and of providing an estimate at |
step of the calculation. Convergence studies show an error estimate scaling consisten
a second order method in two dimensions

€ = (pointy L. (11.5.1)

In Figs. 111.5.1-111.5.3 the steps of the numerical integration procedure are presented.
results of the test case are shown in Fig. 111.6.1 where the corresponding va%g&oﬂ
is used with the parameters of Table 111.6.1. The initial rectangular mesh is represente
Fig. ll1.5.1. This regular mesh enables a crude estimate of the final result but, also, fc
a basis for the algorithm which calculates the optimum mesh accumulation, as show
Fig. 111.5.4. After several iterations, as shown in Fig. I11.5.2, the mesh is accumulated ir
area corresponding to the largest values assumed by the integrand as seen in Fig. |
A further refinement of the mesh is shown in Fig. 111.5.3 and the final result is display
in Fig. l11.5.6. This simple test case illustrates the numerical procedure, but typical tc
mak applications involve more complex functions which require a finer mesh and a n
elaborate initial mesh to guarantee that all the details of the integrand can be resolvec

In Fig. II1.5.7 the error associated with the numerical integration as a function of |
number of steps is represented. Logarithmic scales are used, and a linear fit is disp
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FIG. 111.5.1. Map of the integration grid with 25 points without any mesh accumulation.

in order to represent the asymptotic behavior. In Fig. 111.5.8 the error associated with
numerical integration as a function of the number of points is represented. One of the
issues while implementing such a method is to guarantee that the same pointis not evalt
twice, since each evaluation is costly in terms of computing time. This problem is solv
by storing the integrand in a vector and using it whenever required. In order to optim
the storage as well as the retrieval of the information, a reversed binary index of all
rational points in a square is introduced. Hence, the gdifx 0.0} is represented by the
pair (1, 1), {0.0, 1.0} — (1, 0), {1.0, 0.0} — (0, 1) and{1.0, 1.0} — (0, 0). Successive sub-
division of the interval yields the coordinates f@&:5, 0.0} — (2, 0), {0.25, 0.0} — (3, 0),
{0.75,0.0} — (7, 0), etc. This enables a binary search for the information as demonstra
in Fig. I11.5.9.

FIG. IIl.5.2.  Map of the integration grid with 185 points and with mesh accumulation.
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FIG. 111.5.3. Map of the integration grid with 345 points and with mesh accumulation.

I11.6. Benchmark Tests

The accuracy of the CASTOR-K code is assessed by comparison with analytic th
in the small orbit width limit and by a benchmark test with linear [20] and non-line
simulations [5]. For comparison with the local analytic expression, valid in the small or
and large aspect ratio limit, a very large aspect ratio is chosen. In order to ensure

_5.0%x10

_1.0x10

-

7
5x19

~1.

FIG. lll.5.4. Surface plot of the integrand evaluated at the 25 grid points without any mesh accumulatio
shown in Fig. I11.5.1.
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FIG. lIl.5.5.  Surface plot of the integrand evaluated at 65 grid points using mesh accumulation.

the small orbit limit can be applied an extremely large value for the magnetic field
chosen. In addition, a very localized eigenfunction is used in the calculation where the ra
displacement is set to zegp= 0 in agreement with the conditidi <« &. An overview of
these parameters is given in Table 111.6.1.

!
7 L|H|W'||I|””|||I|| i
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5 U \ |

7
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FIG. 11.5.6.  Surface plot of the integrand evaluated at 425 grid points using mesh accumulation.
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FIG. 111.5.7.  Error associated with the two-dimensional integration as a function of the number of evaluati
represented in a logarithmic scale.
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FIG. Ill.5.8.  Error associated with the two-dimensional integration as a function of the number of iterati
represented in a logarithmic scale.
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FIG. 111.5.9. Map of the initial distribution of the integrand evaluations and their binary coordinates.

Using these parameters the known results obtained in the small orbit limit and large as|
ratio limit are recovered. Figure 111.6.1 compares the results obtained from analytic the
[3] with those calculated by the CASTOR-K code. This diagram shows a good numeri
convergence, where an accuracy of 1% can be achieved with around 1000 evaluations
integrand. This calculation will take around 10—-20 minutes on a desktop personal comp
based on a Intel pentium microprocessor running at 400 MHz (SPECIint95 of 15.0 «
CPUmark32 of 1000), under the Linux operating system. Realistic tokamak simulatic
can take up to a few hours of CPU time depending on the complexity of the orbits,
eigenfunctions, and on the accuracy required.

Inthe comparison with the initial value simulations non-linear code (FAC) a very unstal
mode is considered. This allows a sufficiently accurate determination of the growth rate v
a simulation of a few wave periods in the non-linear initial value calculation. It is importa
that the growth rate be sufficiently smaller than both the particle bounce frequency and

TABLE 111.6.1
Parameters for the Comparison with Analytic Theory

Inverse aspect ratio of the torus 1=1x10

Magnetic field on axis By=1x 10T

Major radius of the torus Ry=8m

Bulk ion density n, = 1.3593x 10°*m3
Total poloidal magnetic flux Y, = .4276x 10°°
Total poloidal magnetic flux Vp = 2.7367x 10' Tm?
Mode angular frequency w="7.08x 10°rads*
Toroidal mode number n=-3

Fast ion temperature (MAXWELLIAN) T, =1.7500x 10° keV
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FIG.11.6.1. Comparison of the CASTOR-K code with the results obtained from analytic theory in the sir

inverse aspect ratio limit.

wave frequency. This is achieved with a high-n TAE. The poloidal mode structure is ¢
simplified by retaining only the dominant poloidal mode componénis 8, 9. In tokamak
simulations, all relevant poloidal components are included as shown in Figs. 111.2.3-I11..
In Fig. 111.6.2 the comparison of the CASTOR-K code with the non-linear simulatio
performed by the FAC code is displayed [5]. The corresponding parameters are liste

40,
O FAC Code
e CASTOR—K (large orbits)
—— CASTOR-K (small orbits)
301
3
é 20p-
=
10~
0 l f
2x10° 4x10° © 6x10° 8x10°%
FIG. IIl.6.2. Comparison of the CASTOR-K code with the non-linear code FAC.
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TABLE 111.6.2
Parameters for the Comparison with the Non-linear Simulations

Aspect ratio of the torus € =0.375

Magnetic field on axis Bo=6T

Major radius of the torus Ry=8m

Bulk ion density n =10x 100 m=3
Mode angular frequency ® = 7.000x 1C° rads™
Toroidal mode number n=-10

Poloidal mode number m=28,9

the Table I11.6.2. In this figure the results obtained within the small orbits version of t
CASTOR-K code andin the large orbits version of the CASTOR-K code are plotted toget
with the results obtained by the FAC code. The agreement is excellent within a few perc
except for small frequencies where the different specifications of the distribution functic
inthe CASTOR-K and FAC is important. The small difference between the results from
small orbit's code and the large orbit’s code is due to the fact that the orbit’s size is sn
compared with the mode width for the parameters used in this simulation.

In addition, a comparison between the CASTOR-K code and the NOVA-K code [20, 5
developed at the Princeton Plasma Physics Laboratory is performed in the small c
limit. The main parameters used in the comparison are shown in Table 111.6.3, and
results in Fig. 111.6.3. It is evident that the agreement with different numerical methods
good.

l11.7. The Influence of Trapped and Passing Particles

In the small orbit width limit the interaction of a TAE with both passing and trappe
particles is calculated for an equilibrium with circular cross-section and inverse aspect r
€= % A Maxwellian distribution function is used where the thermal velocity coincide
with the Alfvén velocity. The TAE componemt=—3, m=3 is in resonance with co-
passing particles witlhy = —V,a; and then=—3, M=4 component is in resonance with
counter-passing particles with) = V. For the chosen thermal particle velocity these twc
contributions are the most important ones, accounting for more than 70% of the total ene
exchange. The TAE also interacts with trapped particles via the first and second harmon

the bounce resonance. In Figs. lll.7a—l11.7d the different classes of particles are represel

TABLE 111.6.3
Parameters for the Comparison with the NOVA-K Model

Aspect ratio of the torus e =0.300

Magnetic field on axis Bo=3T

Major radius of the torus Ry=3m

Bulk ion density n =5x10°m=2
Mode angular frequency w = 6.000x 1P rads*
Toroidal mode number n=-2

Poloidal mode number m=34
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FIG. 111.6.3. Comparison of the CASTOR-K with the NOVA-K code.

which interact with the TAE. The contours show the areas in the phase-space wher
energy exchange is more pronounced as a function of the toroidal momentum and mac
moment. The contribution of each resonance to the energy exchange between the pa

and the TAE is summarized in Table 111.7.1.

In each calculation it is crucial to ensure that a sufficient number of bounce harmo
are kept to guarantee convergence. The number of bounce harmonics required depel
the mode structure and on the nature of the orbits. In this case the nine bounce harm
shown in Table I11.7.1 are sufficient since the contribution of the bounce harmonics v
p>5 andp < —4 can be neglected. In the case of large orbits and large toroidal m

125

numbers, the numbers of bounce harmonics have to be increased considerably.

TABLE 111.7.1

Contribution of Different Classes of Particles to the Energy Exchange

Il
|
w

34.5%
3.2%
~0%
~0%
8.1%
7.6%
1.6%
42.7%
1.6%

mn
|
PN

T T T T T T T T T
Il

Il
g~ wN PO

Passing particles
Passing particles
Trapped particles
Trapped particles
Trapped particles
Trapped particles
Passing particles
Passing particles

v = VA
va

v = 3

Precession drift resonance

First bounce resonance

Second bounce resonance

Third bounce resonance
vy =—Va

_ Va
v =3
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FIG. lll.7.  (a) Interaction of a TAE witm = 3, M = 3, 4, with an ion Maxwellian distribution via the first
trapped bounce resonance. (b) Interaction of a TAE with 3, m = 3, 4, with an ion Maxwellian distribution
via the second trapped bounce resonance. (c) Interaction of a TABwtB, M = 3, 4, with an ion Maxwellian
distribution via the co-passing = V, bounce resonance. (d) Interaction of a TAE witk: 3, M = 3, 4, with an
ion Maxwellian distribution via the counter-passing= —Va bounce resonance.

111.8. The Influence of Large Orbits

In the case of large orbits, the particles drift away from the flux surfaces and the
teraction with a localized mode is significantly reduced. In Figs. IIl.8a—I11.8f the poloid:
cross-section of the energy density of a field perturbation is displayed interacting wit
Maxwellian distribution of particles for different values of the Larmor radius. The figure
also represent the orbit of the particle that exchanges the most energy with the wave.
small values of the Larmor radius, Figs. 111.8a—I11.8b, the orbits are confined to a flux surfe
and they exchange energy with the mode very effectively. With increasing Larmor radi
Figs. I11.8c—lIl.8e, the orbits experience excursions away from the flux surfaces decreas
the interaction with the mode. In this regime the precession drift frequency is compara
with the transit and bounce frequencies.
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teraction of a MHD wave harmonic = 3, M = 3, 4, with particle distributions having different orbit widths
represented byy,/a.
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Finite orbit effects start to reduce the energy exchange between the wave and the pal
significantly when the mode width is comparable with the orbit banana width as sho
in Fig. 111.8d. By further increasing the Larmor radius the trapped banana orbits beco
non-standard potato orbits as shown in Fig. 111.8e. In this case the orbits only cross the
turbation during a short period of time and the energy exchange is very small. This effec
more important for high energy particles close to the magnetic axis. The orbits can be m
larger by decreasing the field or the plasma current. The energy exchange between the
and the particle distribution with different Larmor radii is summarized in Fig. 111.8g. Th
energy exchange between the particles and the wave decreases with increasing norm:
Larmor radius of the energetic particles [49]. In Fig. 111.8g the energy exchange is rep
sented by the damping of the wave in the presence of an isotropic distribution of partic
without spatial gradients.

IV. CONCLUSIONS

The hybrid gyro-kinetic MHD model described in this paper provides a detailed d
scription of the interaction of energetic ions with global plasma waves including realis
geometry together with the finite orbit widths effects for large non-standard orbits. A ge
eral self-consistent formulation is derived and the appropriate numerical algorithms for
large scale numerical evaluation are developed and tested. The perturbative approach is
to study the influence of energetic ions on the stability of Aiféigenmodes. The ideal
MHD model is extended in order to include the effect of a perturbed parallel electric fie
and of the finite Larmor radius both being relevant for high temperature plasmas. Thus,
spectrum KTAEs can be evaluated in realistic tokamak geometry.

The model enables the stability analysis of different scenarios including the tritiu
experiments at JET, where a large fraction of energetic particles is present, as well ac
future fusion reactor experiments (ITER) with a significant fraction of alpha particles. Tl
stability of small wave length Alfeh eigenmodes, relevant for the alpha particle confineme
in afusion reactor, can be analyzed using this method. The numerical procedure develog
appropriate to resolve the interaction between short wave length perturbations and ener
particles with complex orbit shapes.

The numerical evaluation of the power trans$&,.; requires two main algorithms,
namely for the integration of the particle orbits and for the phase-space integration. -
orbit following algorithm uses 6 variables in order to handle the geometric singularity of t
poloidal coordinates. Sufficient accuracy is achieved using around 100 Runga—Kutta fo
order steps per orbit. The scheme for the evaluation of the phase-space integration w
accurately and efficiently. Convergence studies yield a scaling of the error consistent \
a second order method in two dimensions. In the small orbit and large aspect ratio limit
results calculated by the CASTOR-K code agree well with those obtained from analy
theory [3]. Good numerical convergence is established, where an accuracy of 1% cal
achieved with around 1000 evaluations of the integrand. In addition, the accuracy of
CASTOR-K code package also is assessed by benchmark tests with the FAC code an
NOVA-K code. These tests confirm in detail that the developed algorithms are robust :
accurate. Furthermore, convergence studies show the new code can be applied to ph
problems with sufficient efficiency.

The CASTOR-K code has been applied for detailed analysis of JET discharges dul
the DTEL campaign [32, 16].
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APPENDIX

A.1. Particle Equations of Motion in CASTOR Curvilinear Coordinates

The covariant and contra-variant components of CASTOR coordinates are

al = Vs, (A.1.1)
a = JVO x V¢, (A.1.2)
a? = Vb, (A.1.3)
ay = JV¢ x Vs, (A.1.4)
a’= Ve, (A.1.5)
ag = JVs x V0. (A.1.6)

J is the Jacobian of the coordinate system§, ¢) and f (s)Vs = V. The metric coeffi
cients are defined as

11— vs?, (A.1.7)
32 .,

O = @WGI ) (A.1.8)

g'? = Vs- Vé, (A.1.9)

J2 ~

Oi12 = —@Vs- Vo, (A.1.10)

22 = |v6)?, (A.1.11)
2 _

O22 = @|Vs| , (A.1.12)

g2 =0, (A.1.13)

O3 = 0, (A.1.14)

B = v = %, (A.1.15)

033 = R, (A.1.16)

whereR(s, 6) is the distance from the toroidal axis.
The differential operators required in the unperturbed orbit integrations are

-

ke = (b- V)b, (A.1.17)
©; =b, (A.1.18)
O3 = b x (A.1.19)
©, = b x Ec (A.1.20)
=b-VB, (A.1.21)
=B ke = (A.1.22)
= ke (bx VB), (A.1.23)
=b-(VxDb), (A.1.24)
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where the contra-variant componentsﬁ@hndﬁ) are

W O33(—3by /360 + dby/3s)by — (9~12(3b3/39) — 022(dbs/98))bs
c 1(s. 0)2 ’
2 (933(—(3b1/30) + dby/9s)by) — £911(3b3/39) — 012(dbs/3s))bs
c 1(s. 0)2 ’
G = — (912(3b3/30) — 922(3b3/33))5)t —5()9211(3*33/39) — 912(3b3/35))b27
S,

,__(0B/3f)bg
W =——-

J(s, 0)
, (0B/ds)bs
w = —=
J(s, 0)
s (3B/dF)by — (3B/ds)b,
w” = ~ ,
J(s, 0)
wherew is defined as
W =bx VB.

In the CASTOR curvilinear flux coordinates these operators take the form

O} = gl + g%, =b' =0,

f
92 _ ol2 2h 2
O1=0g"b1+g*“b=b I8’
03 = g%,
ol — 033k — g1oklbs — gaok2bs
2= J(s,0)
02 — —0a3k3by + Gu1kibs + g1ok2bs
2= J(s,0) ’
o3 — Or2kiby + gookZby — guakib, — giokZb,
2 J(s, 0) ’
@é = w,
03 = w?,
®g =
9B
@y 00 Fdss
q(s)B

Op = guikiw® + giok2w! + gioklw? + gookZw? + gaskiw?®,

o, _ (8b3/00)by — (3ba/35)b; + (~0by/30 + dba/35)bg

7 fr— ~ .
J(s, 0)

(A.1.25)

(A.1.26)

(A.1.27)

(A.1.28)

(A.1.29)

(A.1.30)

(A.1.31)

(A.1.32)
(A.1.33)

(A.1.34)

(A.1.35)

(A.1.36)

(A.1.37)

(A.1.38)
(A.1.39)
(A.1.40)

(A.1.41)

(A.1.42)

(A.1.43)



STABILITY ANALYSIS OF ALFV EN EIGENMODES 131

A.2. Discretization of the Orbit Integrals

The implementation of the orbit integrals requires computation of the seviators
present in the particle equations of motion numerically,

(1 - év”(*‘h)S = 1,0 + vg((a; + 0o, + %@%, (A2.1)
(1— 1v®7>§ = 1,02 + vj(@% +020;) + 62, (A2.2)
Q me
<1 - 1v”®7)¢5 = 1,03 + i (03 + 0%0,) + ——68, (A2.3)
Q Q me
1 : woy
(1 - §v||®7) b = ——®4 + 5105 — ©400). (A.2.4)

These equilibrium quantitie® are functions of s (radius) aritd(generalized poloidal
angle). An efficient two dimensional interpolation scheme is given by applying cubic spli
in s and Fourier expansion with respect to the arigl€his interpolation must account for
accurate representation of the equilibrium. In addition, all quantities must be consis
up to machine accuracy in order to ensure convergence of the orbit following proced
Given an equilibrium reconstructed with the HELENA code, the splined equilibrium mi
be sufficiently close to the original magnetic configuration and, furthermore, operators
V x b, VB, etc., must be represented accurate up to machine precision. The quan
required in the equations of motion are expressed in ternfs &, q, by, by, andbz and
their first derivatives irs, 6. f, F, andg only depend ors, while by, by, andb; depend on
s andd. The radial dependence is interpolated using cubic splines defined as

- h? . ~
Gi(s,0) = Z (aYnj +bYoisj + @ — )Y, + (0> = b)Yy, ;) 5 sin(—j0), (A.2.5)
j
- h? o~
Gp(s.0) = > (aYaj+bYirj + @ — )Yy + 0 —b)Yy,y ;) & Cos=i0), (A.2.6)
j

where
h = Xns1 — Xo, (A2.7)
a= S X (A2.8)
h
b="2 _hx”. (A.2.9)

Each array of splines contains the value of the function at each node and the correspo
second derivative is. The Fourier decomposition uses the fact that all functions are eitt
even or odd irf. Hence, the corresponding derivatives are represented as

3G (s, )

as - Z (daYrLJ' +dbYo1; + (3a% — 1)daYr/l/,j

]

2
+(3b? — 1dbY,, J) 5 (sin(—jé)), (A.2.10)



132 BORBA AND KERNER

0Gp (s, é Z
% = (dae; +dbY¥,.yj + (3~ DdaY;
]
h2 ~
+(3b* — dbYy,, ;) E(cos(—J 0)), (A.2.11)
G, (s, é "
% _ EJ: (@Yo +bYpizj + @ — )Y,
h? ~
+ (% =h) éﬁrl’j)g(—J cog—jh)), (A.2.12)
G S, é ”
% = Z (aYnj +bYapj + @ — Yy

J

h2 =
+ (0 - b)Yn/;Lj)E(J sin(—j6)), (A.2.13)

whereda= —% anddb = }.

Itis easy to see thdm, dby/ds, db,/36, anddbs/96 are odd functions iA anddb, /36,
aby/as, abs/as, by, andbs are even functions ié. Defining B and its derivatives

B, (A.2.14)
bz
0B _ 0F/05)bs = F(0ba/05) 215
as b3
9B _ _ F(9bs/00) (A.2.16)

(o)
D

2 s
b3

the ® terms can now be represented using splines. The following expressions represer
metric coefficients in the new representation

_ f29+ F2qbZ + BFbib,

_ 5Fh, , (A.2.17)
bi(Fq + Bly)
=L T A2.1
5 , (A.2.18)
F
Oz = q?bz + b3, (A.2.19)
_ F(Fq+Bb)
a3 = g (A.2.20)
BFh,
n_-_= A.2.21
o ( )
BFb
12 _
g (A.2.22)
BFH2 B
22
_ n , A.2.23
f2qb, = Fgby + BB ( )
2
g% Bq (A.2.24)

~ F2q+ BFb,’
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Finally the® terms are

el =0, (A.2.25)
B
i A2.2
%1=Eq 1B (A2.26)
B’qhbs
3 _
17 F2q + BFb,’ (A.2.27)

B3(dbs/30) (Fb, + Bqk?)

el = _ > , (A.2.28)
fF(Fq+ Bhy)
07 B((9bs/30) Fby — (3b1/36) Fbg + (3by/8s) Fbs + B(abs/as)qbg)
B fF(Fq + Bby)?
(A.2.29)
o3 — B3((3by/86) Fb, — (3by/9s) Fby + B(3bs/d0)qbybs — B(3b3/35)qbzb3)
2 fF(Fq+ Bby)>
(A.2.30)
B2(dB/00)bs
5 1 = -/ L.
%= "F(Fq+ By’ (A.2.31)
B2(3B/ds)bs
&) 2 e
= T(Fq+ Bby’ (A.2.32)
B2((8B/36)by — (9B/ds)by)
3 __
O3 = f(Fq+ By , (A.2.33)
_ B(3B/dh)
4= Eq1Bb (A.2.34)

B3(—((0B/36)(3bs/36)Fby) + (3B/9s)(dbs/00)Fb, + (9B/36)(dby/36) Fbs — (9B/36)(db,/ds) Fbs)

O = fF(FQ + Bby)®
B(3B/3s)(3s/30)qbZ — B(3B/36)(3hs/35)qk?
e ( R ) (A.2.35)
B2 — -
o ((9bs/36)by — (3bs/ds)by — (3by/80)bs + (3by/ 33)b3) (A.2.36)

f(Fg+ Bby)

A.3. Accuracy of the Magnetic Field Representation

It is essential that the orbit integrals are performed sufficiently accurately; here the
curacy depends crucially on the representation of the magnetic field. The radial coord
dependence is represented by cubic finite elements, and the dependence on the p
coordinate by a Fourier decomposition. The choice made for the representation of the
tionshy, by, bs guarantees that the field is consistent, NMe.B=0 (up to machine accuracy
& ~ 10715 and that all the differential operators required in the orbit integrals are rep
sented up to machine precision. This fact is confirmed by the level of accuracy by wi
the invariants of motion are conserved during the orbit integrations (l11.4). Independer
the number of radial nodes used, and of the number of Fourier modes, the particle c
are well described by the field representation. Depending on the equilibrium configura
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FIG. A.3. (a) Representation @¢b? using 3, 5, and 7 poloidal harmonics. (b) Representatio®ofising 3,
5, and 7 poloidal harmonics. (c) Representatio®éfusing 3, 5, and 7 poloidal harmonics. (d) Representation
of ® using 3, 5, and 7 poloidal harmonics. () Representatio®Ptising 3, 5, and 7 poloidal harmonics.
(f) Representation o3 using 3, 5, and 7 poloidal harmonics. (g) Representatigdeafsing 3, 5, and 7 poloidal
harmonics. (h) Representation®f using 3, 5, and 7 poloidal harmonics.

the resolution required in the field representation can change; simple circular cross-se«
equilibria require only a few poloidal harmonics, while strongly shaped triangular plasn
require more than 5 Fourier components. For plasmas, where the plasma boundary i
termined by a separatrix, the coordinates used in CASTOR cannot represent the last cl
flux surfaces accurately. The functions that represent the magnetic field near the separ
have a strong dependenceditlose to the X-point and require a large number of Fourie
harmonics for accurate representation. The analysis of the excitation of global mode:
energetic ions does not require the inclusion of kinetic effects at the plasma boundary, s
the plasma edge is dominated by low temperatures and the density of energetic ions is
small. For this reason a less accurate representation of the plasma boundary does not c
tute a problem. The number of radial cubic elements and poloidal Fourier components
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FIG. A.3—Continued

depend on the accuracy required in the representation of the equilibrium. As 1% acct
is sufficient in most applications, 41 radial grid points and 7 Fourier components are u

For a JET equilibrium the functions which are more difficult to representgrand
@7 as defined in Appendix 2. The functiogg, 82, 83, B3, 83, 63, 63, and®, can be
represented accurately with 5 poloidal harmonics in the regiof0, 0.8], while ®¢ and
®7 require 7 poloidal harmonics. The results shown in Figs. A.3a—A.3f give evidence
the high accuracy achieved with only 5 harmonics for the quantdie?, 83, 01, ©3,
03, ®3, and®,; only the quantitie®s and®- require 7 poloidal harmonics for the same
level of accuracy as shown in Figs. A.3g—A.3h.
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